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We present a numerical investigation of the parameters characterizing the 2→1 transition recombination
gain in Li III ions s13.5 nmd. The numerical model includes the initial optical field ionization of the plasma by
an intense 100 fs laser pulse, taking into account above threshold ionization heating, particle collisions, and
spatial effects. Gain is then calculated during the process of recombination as the plasma expands and cools.
We show that by taking into account the non-Maxwellian nature of the electron distribution function in the
plasma and its spatial distribution, high gain in the 2→1 transition of Li III is feasible under certain initial
conditions, even though initial estimates based on the energy absorption during the ionization predict very low
gain. We characterize the behavior of the gain under different pumping parameters and initial plasma
conditions.
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I. INTRODUCTION

Achieving recombination gain is highly desirable in the
pursuit of x-ray lasers. Compared to collisional x-ray laser
schemes, where a very high degree of ionization is needed,
recombination schemes require relatively low pumping
power. This, combined with the high quantum efficiency
achieved by using the transition to the ground state, makes
the creation of a truly tabletop x-ray laser feasible. Further-
more, the highly favorable scaling of the required pumping
energy with decreasing wavelengths may enable reaching
the so-called “water window” (the wavelength range
2.3–4.4 nm, for which absorption in water is low) with a
tabletop x-ray laser system.

However, stringent experimental conditions are required
in order to achieve recombination gain. Although several ex-
periments demonstrated gain[1,2] and lasing action[3,4] in
the 2→1 transition in Li III ions, gain saturation has not yet
been achieved. Alongside the experimental efforts, several
theoretical studies were conducted in order to identify the
processes involved in gain creation, and to characterize the
initial conditions required to achieve gain in a recombination
scheme(e.g., Refs.[5–8]).

In the case of the LiIII 2→1 transition, it is fairly
straightforward to show from analysis of the rate equations
that the required initial conditions for achieving gain are a
fully stripped lithium plasma with an electron density in the
range 1018−1020 cm−3 and an electron temperature under
10 eV. Since the duration of the recombination gain is at
most 10−15 psec after ionization, the pumping duration has
to be very short in order not to interfere with the recombina-
tion process. One of the means of producing such a cold,
high density, fully stripped plasma is by optical field ioniza-
tion (OFI) [5] using an intense, ultrashort laser pulse(pulse
duration ,100–200 fs, intensity,1017 W/cm2). The high
electric field in the laser pulse fully strips the Li ions in the
plasma, while the short pulse duration prevents substantial
heating. Simple estimates can provide the lower limit for the

energy absorbed during the ionization process. For the laser
intensities required to reach full ionization, these estimates
yield energies that correspond to an electron temperature that
is too high for gain to be generated during recombination.
Although some of the studies mentioned above include more
sophisticated models, which take into account additional ef-
fects (such as space charge effects, the effects of different
ionizing pulse shapes, and allowing for a two-temperature
plasma after ionization), they still predict very small gain
(see, e.g., Refs.[7,8]).

We present here results from a numerical model, which
takes into account several additional properties of the OFI
plasma, such as the non-Maxwellian nature of the plasma
and its spatial distribution, and demonstrates that high gain
in the 2→1 transition of recombining LiIII is achievable.
Furthermore, we investigate the effects of different experi-
mental parameters on the gain and point toward the optimal
experimental conditions required to achieve gain.

II. THEORETICAL BACKGROUND

The main source of heating of OFI plasmas created with
ultrashort pulses is the so-called residual heating, or above
threshold ionization(ATI ) heating [5]. This heating arises
from the variation in the oscillation phasef between the
ionized electrons[assumed to have zero velocity at the in-
stant of ionization, and then moving with velocity given by
v=v0cossvt+fd] and the phase of the laser electric field.
Assuming the ionization occurs by tunneling through the
Coulomb barrier in the presence of the electric field, we can
calculate the probability of an electron being ionized at a
specific laser phase by employing the static electric field tun-
neling ionization rate(taken from Ref.[9], calculated for the
instantaneous electric field). The average residual energy is
proportional to the quiver energy of the electrons in the laser
field, Eq=e2E2/4mev

2, wheree is the electron charge,E is
the laser peak electric field,me is the electron mass andv is
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the laser angular frequency. We note that the quiver energy is
proportional tol2 sl=2pc/vd. Following Ref. [5], we can
extract a functional form of the electron distribution function
fe after ionization:

fesh;E,Ip,vd =
a

Îhs1 − hd
expF− 2

3sIp/Ihd3/2E0/E

Î1 − h
G , s1d

whereh=E /2Eq is the normalized electron energy,Ip is the
ionization potential, normalized to the ionization potential of
hydrogen atom,Ih, and the electric fieldE is normalized to
the atomic field strengthE0=5.13109 V/cm. The normal-
ization constant a is determined by the relation
e0

1fesh ;E,Ip,vddh=Ne, where Ne is the electron density.
The distribution function in Eq.s1d is derived assuming
ionization by a constant-amplitude electric field. The fact
that the pulse is actually shaped in time may have a sig-
nificant effect on the final form of the distribution func-
tion and the average energy associated with it. Various
pulse shapes and their effects were studied in Ref.f6g. In
the model described in Sec. III we assumed the ionizing
beam had a Gaussian shape. We note that ash→0, the
distribution function diverges likeh−1/2. Although the di-
vergence disappears ase-e collisions are accounted for,
large numbers of electrons are still concentrated in the
low-energy region. On the other hand, the distribution has
a smooth cutoff ath=1 and no electrons have energies
higher than 2Eq. By further examining the behavior ash
→1, we see that for the intensities of interestsE,2E0d,
the exponential decay of the function for LiIII ions corre-
sponds to the exponential decay of a Maxwellian distribution
with Eavg,0.3Eq, whereas the average energy of the distri-
bution function in Eq.(1) is only Eavg,0.15Eq. This means
that although this part of the distribution function contributes
very little to the electron density, it is significantly more
populated than it would be for a Maxwellian distribution
function, and hence contributes a significant amount to the
total average energy. The recombination gain depends upon
rapid collisional recombination and deexcitation processes,
which are dominated by low-energy electrons. Since most of
the electrons are in fact in the low-energy region, the effec-
tive recombination rate is higher than would be calculated
for a Maxwellian distribution with the same overall average
energy.

Figure 1 demonstrates the difference between the calcu-
lated distribution function immediately after ionization and a
Maxwellian distribution function with the same average en-
ergy. The distribution function was calculated using the code
described in Sec. III A, for two different ionization wave-
lengths(248 and 600 nm). The calculation of the function
plotted in Fig. 1 has taken into account all the effects dis-
cussed below in Sec. III A(including the temporal shape of
the ionizing beam and initial conditions of relatively cold
He-like Li plasma). Hence, both the shapeand the average
energy associated with the plotted function are very different
from the ones associated with the function presented in Eq.
(1). We can see that the difference between the calculated
and the Maxwellian distribution functions is much more sub-
stantial as we increase the wavelength, which is the reason

that even for longer wavelengths, with average energy of
over 100 eV, we can still get large gain. Since the shape of
the function is not Maxwellian, the ratio between Maxwell-
ian rates and the rates calculated by direct integration over
the distribution function is different for different processes.
As an example, we calculated the three-body recombination
rates to the different principal quantum levels of LiIII ,
b3body

s2+d snd, for a distribution function calculated with an ion-
ization wavelength ofl=400 nm, an ionization intensity of
Ip=1.331017 W/cm2, and an initial ion density ofNi =5
31018 cm−3. We compared the above rates with the ones
calculated for a Maxwellian distribution function with the
same average energy(the average energy in this case was
Eavg=64 eV). The ratio between the rates calculated from the
distribution function and the temperature dependent rates
was between 3 and 7 for the different principal quantum
levels, and averaged to about 5(averaging on the first ten
principal quantum levels). The effects of the non-Maxwellian
nature of the OFI plasma were considered before[10], but
were not used to calculate gain. One of the main problems

FIG. 1. Electron distribution functions after ionization for dif-
ferent ionizing wavelengths. The solid lines are the calculated dis-
tribution functions and dashed lines are Maxwellian distribution
functions with the same average energy. In(a) l=248 nm and in(b)
l=600 nm.
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with the above argument was that rapid Maxwellization of
the electron distribution may eliminate most of these effects
before gain can be generated. However, an additional inher-
ent feature of the plasmas used in the recombination gain
experiments is their spatial distribution. In order to achieve
the intensities required, the laser beam was focused to a tight
spot, roughly,10 mm in diameter, and was then guided
through the plasma to create an ionized channel(the “gain
region”). This process resulted in a “hot,” high density
plasma in a narrow channel embedded in a cold, lower den-
sity region. This may have given rise to a rapid expansion
and cooling, and resulted in the highly energetic electrons
escaping from the gain region without affecting it signifi-
cantly.

III. NUMERICAL MODEL

The numerical model consists of three distinct stages that
are calculated separately. Ionization and heating, expansion
and cooling, and recombination and gain(discussed in Secs.
III A–III C ).

A. Ionization and heating

Ionization is calculated using a 1D(one dimension) in
space and 3D in velocity Particle In Cell(PIC) code. The
code is parallelized and typically runs on 12 dual CPU
nodes. The calculation extends to a radiusr =3r0, wherer0 is
the ionizing beam radius. In order to simultaneously accom-
modate the need to have high resolution when calculating the
electric field, and the need to have a large number of par-
ticles per cell to have good statistics when calculating the
collisional processes, the code uses two spatial grids. A
coarse grid resolves the beam radius(,70 cells perr0), with
an initial 10 000 particles per cell. All particles within each
cell interact through binary collisions. A finer grid, which
resolves the Debye length, is used to calculate the self-
consistent electric field. A minimum initial value of 100 par-
ticles per cell is maintained in the finer grid. For differentr0
and different initial plasma densities, the ratio between the
cell sizes of the coarse and the fine grids vary, yet the mini-
mum values mentioned above are maintained. At each time
step, new particles are added to each cell according to the
tunneling ionization rate that corresponds to the instanta-
neous laser electric field amplitude, presented by

El
W = E expf− s2x/dd2gexpf− s2t/td2gsinsvtdx̂, s2d

where x̂ is the unit vector of the polarization direction,d is
the laser beam diameter, andt is the pulse duration. Spatial
variation is in thex̂ direction in order to take into account
effects of the ponderomotive force, as discussed below. The
initial plasma was taken to be a He-like Li plasma with rela-
tively low s,1 eVd electron temperature, which is taken
from experimental estimates and agrees with previous cal-
culationsf6g. The collision operator models bothe-e and
e-i collisions, and is implemented using the binary colli-
sion model described in Ref.f11g. Special attention was
given to the collision frequency under the influence of the
strong laser electric field, mainly for establishing the

maximum impact parameter in the Coulomb logarithm.
For intense high frequency laserssv.vpd, the usual De-
bye shielding, generated invp

−1 time scales, cannot follow
the oscillating electrons and no longer limits the range of
the Coulomb potential. The new limiting factor in this
case is the requirement that the collision occur in a short
time compared with the period of the laser field. The usual
parameter used in this case isbmax=v /v swhere v is the
electron velocity, see, e.g., Ref.f12gd. However, in the
cases where the electric fieldEl is on the order of the
electric field between the ions and the electronssor
higherd, another limiting factor for bmax needs to
be introduced since as the impact parameter increases,
the Coulomb field becomes a mere perturbation with
respect to the external electric field. We definerc, the
effective maximum Coulomb radius using the relation

e2/ rc
2=eZuEW lu. Our definition for bmax is then

bmax= min sÎeZ/El ,v /vd, where the electric field taken is
the instantaneous oscillating electric fieldsin consistency
with the requirement that the collision be completed in a
short time compared to the laser frequencyd. In contrast to
Refs. f6,10g, e-e collisions play an important role in our
model. Thee-e collision rate is much higher than thee-i
collision rate, since the relative velocities between elec-
trons, which are moving together in the electric field, are
on the order of the average energy of the final distribution
function, whereas the relative velocities between the elec-
trons and the stationary ions are on the order of the elec-
tron quiver energy, which is much higher. Althoughe-e
collisions do not contribute to overall heating of the
plasma, they do contribute to the Maxwellization process
of the distribution function.

Effects of the ponderomotive force are taken into account
in the calculation. It was thought that these might signifi-
cantly affect the gain, especially when the laser was focused
very tightly to reduce the diameter of the gain region and
increase the expansion and cooling rate. However, the effects
of the ponderomotive force turned out to be rather minute,
which can be explained by the following analysis. The pon-
deromotive force is given by

fp =
e2

4mev
2¹W uElu2. s3d

On the other hand, we can estimate the self-consistent elec-
tric force fs in the plasma from Maxwell’s equations. Assum-
ing quasineutrality and taking the beam radiusr0 as the typi-
cal length scale in the problem over which we have some
density fluctuationdne, we can write

¹W ·EW = 4pr ⇒ fs , 4pe2r0dne. s4d

Considering the ratio of the two forcessthe ponderomotive
force fp is taken at its maximum point,r =r0/Î2d we have

fs

fp
, 7.5ñeS r0

l
D2dne

ne
, s5d

where ñe is given in units of 1019 cm−3. With ñe=1 and a
typical value for r0/l of about 5 sfor a tightly focused
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beamd, we see that the ponderomotive force can induce
density fluctuations of no more than 1%, and is therefore
negligible.

B. Expansion and cooling

As shown in Ref.[10], the distribution function produced
by OFI yields very high recombination rates, which may lead
to very high gain. However, since the Maxwellization pro-
cess is very rapid, the net effect on the gain may be substan-
tially smaller. As discussed above, the fully ionized plasma is
only created within a narrow channel, about 10mm in diam-
eter, which is embedded in a low temperature, lower density
plasma. Hence, the hot fully ionized plasma undergoes rapid
expansion and cooling that affects the distribution function
on time scales relevant for gain generation, i.e., 10-15 psec
after ionization. Furthermore, this expansion significantly
slows down the Maxwellization process, since the electrons
— especially the energetic electrons — tend to escape the
gain region before colliding with any of the particles there.
The time evolution of the distribution function following
ionization is calculated using a 1D cylindrically symmetric
Fokker-Planck code. The code, described in Ref.[13], is es-
sentially an implementation of theSPARK code[14]. The as-
sumption of cylindrical symmetry is somewhat inaccurate,
but conservative, since relaxing this assumption is expected
to lead to faster cooling and higher gain. This is because the
velocities of the electrons that were ionized by a linearly
polarized laser beam are directed straight out of the gain
region and not isotropically distributed as in our model,
therefore the energetic electrons have a higher probability
than we calculate to escape the gain region without affecting
it. In order to stay within the diffusion approximation, we
introduced a smooth cutoff to the distribution function at
high energies. The cutoff was introduced for energies above
500 eV, for whichvtc/ r0@1 (wherev is the velocity asso-
ciated with 500 eV andtc is the collision time), since par-
ticles with such high energies have very little probability of
participating in any collisional process inside or close to the
gain region. Finally, although recombination physically oc-
curs simultaneously with expansion, it is calculated within a
separate code with no feedback. Hence, effects from recom-
bination heating were not taken into account in the calcula-
tion of the expansion and cooling of the plasma. However, an
estimate(see below) of the overall heating from recombina-
tion clearly shows that it should have no significant effect on
the expansion and cooling processes or the gain.

C. Recombination and gain

In order to take into account the effects of the non-
Maxwellian nature of the distribution function, the cross sec-
tions for the relevant atomic processes are integrated over the
time-dependent distribution function, yielding time-
dependent rate coefficients, which are used to calculate the
recombination processes and gain. In order to simplify the
code and make it more robust, simple analytic forms for the
ionization and excitation cross sections were used[15,16].
The other required cross sections were obtained from the

detailed balance relations between excitation(ionization) and
deexcitation(recombination) processes.

In order to estimate plasma heating due to recombination
and deexcitation processes, we examined at the time-
dependent level populations, and calculated the energy addi-
tion from all the recombined electrons(up to the time when
the maximum gain is achieved) according to the relation

k«lstd =
1

Nestd
o
n

Nn
s+2dstdIp,n, s6d

whereNn
s+2dstd is the population of leveln of the Li III ions at

time t, and Ip,n is the ionization potential from leveln. The
estimated heating did not exceed 0.5 eV for any of the pa-
rameters considered, and was under 0.1 eV in most of the
cases. We should note that in dividing byNe we assumed that
the added energy is distributed equally among all the elec-
trons. In fact, since the electrons contributing to the recom-
bination are, in essence, the low-energy electrons, they are
the ones that will absorb the added energy. However, as dis-
cussed above and shown in Fig. 1, the low-energy electrons
are the majority of the electrons and even if the heating were
twofold or threefold higher than given by Eq.(6), it would
not be expected to affect the gain significantly.

IV. RESULTS FROM THE NUMERICAL MODEL

The model described above is used to compute a 1D
space-time distribution of the recombination gain in the LiIII

2→1 transition. We investigated the gain as a function of the
four main parameters that influence it in the following pa-
rameter range: Plasma ion density, 1018−531019 cm−3 (Sec.
IV A ); ionizing beam diameter, 6−15mm (Sec. IV B); ion-
izing beam wavelength, 248,400, and 600 nm(Sec. IV C);
and ionizing beam intensity, 1.3−2.231017 W/cm2 (Sec.
IV D ).

A. Plasma density

Since both the gain and the rates of the underlying atomic
processes increase with higher electron density, we expect
higher gain of shorter duration at higher densities. Indeed, as
can be seen in Fig. 2, the gain increases significantly as the
density increases, and the duration of the gain is shortened.
At the highest density[Fig. 2(d)], we note that high gain is
seen immediately after the ionization. Since the effects of
recombination during ionization, which are more probable in
the high density case, are not taken into account in the
model, the actual results presented in this part of the figure
should be treated with caution. It is presented for qualitative
purposes only.

B. Ionizing beam diameter

The beam diameter determines the cooling rate, and more
importantly, the effective delay in the Maxwellization rate,
due to the escape of the energetic electrons from the gain
region before participating in any Maxwellization process.
Therefore we can expect the gain to grow as the beam radius
is decreased. However, it is harder to propagate a tightly
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FIG. 2. (Color online) Gain distribution for different ion densitiesNi. The ionizing beam wavelength in all cases isl=248 nm, the beam
diameter isd=10 mm, and the beam intensity isIp=1.331017 W/cm2. Ni (in units of 1018 cm−3): (a) 1, (b) 5, (c) 10, and(d) 50.

FIG. 3. (Color online) Gain distribution for different ionization beam diametersd. The ion density in all cases isNi =531018 cm−3, the
beam wavelength isl=400 nm, and the intensity isIp=1.331017 W/cm2. (a) d=15 mm, (b) d=10 mm, (c) d=6 mm.
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FIG. 4. (Color online) Gain distribution for different ionization beam wavelengthsl. The beam diameter in all cases isd=6 mm, the
intensity isIp=1.331017 W/cm2, and the ion density isNi =531018 cm−3. (a) l=600 nm,(b) l=400 nm,(c) l=248 nm.

FIG. 5. (Color online) Gain distribution for different ionizing beam peak intensitiesIp. The beam wavelength for all the runs wasl
=400 nm, the beam diameter wasd=6 mm, and the ion density wasNi =531018 cm−3. Ip (in units of 1017 W/cm2): (a) 1.3, (b) 1.6, (c) 1.9,
and (d) 2.2.
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focused beam, which is one of the crucial experimental dif-
ficulties in producing recombination gain. The results of the
gain for different beam diameters are presented in Fig. 3.

C. Ionizing beam wavelength

As discussed in Sec. II, the energy absorption by the
plasma during ionization is due to the so-called residual, or
ATI, heating. The average energy is proportional tol2, so
using a longer wavelength ionizing beam should cause fur-
ther heating and decrease the gain substantially. In Fig. 4 we
see, however, that although the gain indeed drops substan-
tially when we increase the wavelength, the gain persists
even up to a wavelength of 600 nm.

D. Ionizing beam intensity

The gain is very sensitive to the initial conditions of a
fully ionized plasma. The fractional occupation of then=2
level does not exceed about 10−3 in times relevant for gain
generation, and by taking into account the statistical weight
factor, we find that a fraction of,10−4 of not fully ionized
ions will destroy the gain. Hence, there exist an intensity
threshold, or a minimum intensity, for which we can achieve
gain. On the other hand, the average energy of the OFI

plasma is proportional to the beam intensity, and we expect
lower gain for higher intensity pump beams. The optimal
ionizing intensity is then just above the “cutoff intensity.” In
a longitudinal pumping setup, the ionizing beam is absorbed
during the propagation and ionization, hence the intensity
has to be adjusted so that at the exit of the channel, it will
still be above the cutoff intensity. The gain for different in-
tensities shown in Fig. 5 is a way of demonstrating the be-
havior of the gain along the channel, considering longitudi-
nal pumping. We can think of the pumping beam as traveling
from right to left in Fig. 5, being absorbed as it propagates.
Each plot shows the gain cross section at a different point
along the propagation, with the smallest gain at the entrance
and the highest gain at the exit of the plasma.
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